a2 United States Patent
Kobayashi

US009389746B2

US 9,389,746 B2
*Jul. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54) INFORMATION PROCESSING APPARATUS
AND CONTROL METHOD THEREOF, AND
COMPUTER PROGRAM

(75) Inventor: Kiwamu Kobayashi, Yokohama (JP)

(73) Assignee: Canon Kabushiki Kaisha, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 1225 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 13/345,230

(22) Filed: Jan. 6,2012
(65) Prior Publication Data
US 2012/0102430 Al Apr. 26, 2012

Related U.S. Application Data

(63) Continuation of application No. 12/170,994, filed on
Jul. 10, 2008, now Pat. No. 8,112,716.

(30) Foreign Application Priority Data
Jul. 17,2007 (IP) oo 2007-186326

(51) Imt.ClL

GO6F 3/048 (2013.01)

GO6F 3/045 (2006.01)

GO6F 3/0481 (2013.01)
(52) US.CL

CPC .. GO6F 3/0481 (2013.01)
(58) Field of Classification Search

CPC ittt GOGF 3/0485

USPC ittt 715/784, 788
See application file for complete search history.

(56) References Cited

FOREIGN PATENT DOCUMENTS

JP 03-214362 A
OTHER PUBLICATIONS

9/1991

Feb. 24, 2012 Japanese Office Action that issued in Japanese Patent
Application No. 2007-186326.

Primary Examiner — Andrea Long
(74) Attorney, Agent, or Firm — Cowan, Liebowitz &
Latman, P.C.

(57) ABSTRACT

An information processing apparatus comprising display unit
configured to display a window, accepting unit configured to
accept a resize instruction of the displayed window together
with a scroll instruction indicating whether or not to scroll
display contents within the window, and control unit config-
ured to control a size of the window and a scrolling of the
display contents within the window based on contents of the
resize instruction and the scroll instruction, wherein when the
scroll instruction indicates that the display contents are to be
scrolled, the control unit changes the window to a size indi-
cated by the resize instruction, and scrolls the display con-
tents according to a change amount of the window, and when
the scroll instruction indicates that the display contents are
not to be scrolled, the control unit changes the window to a
size indicated by the resize instruction, and suppresses a
scrolling of the display contents.

6 Claims, 29 Drawing Sheets

ABCDEFGHIJKLMNOP

0 K|

1/ L2202

T2345067808907
abcdefghijkimnop
TAVDIZAHhFOTAYIRAEVS
——ZRAREAATEFAEER
HWOIABOEIICELTEER

E SR

Wl Lrrr

Ll Ll L

A S RS SRR R NN AN

O T T T

-—-——-[7777/1.

U.S. Patent Jul. 12, 2016 Sheet 1 of 29 US 9,389,746 B2

FI1G. 1A
'd - N
108
100
¢
106 107 109
Vi)i P
EXTERNAL
ROM STORAGE | | OPERATION
DRIVE
101
0w
cPu K >
H 102 H 103 H104 H 105
¢ ! {
DISPLAY
RAM HD oLt \/F
FI1G. 1B FIG. 1C
140
|
121 122
| 131_|
ik 132
/ 120

U.S. Patent Jul. 12, 2016 Sheet 2 of 29 US 9,389,746 B2

%)1
! 201b 201a 201b ‘210
B A e s W A (8
| !
N ABCDEFGH! JKLMNOP
203~ aBrbéelnbLrkAuvéno 204
112345678907 !¥%$#
2034003a~l abcdefghijklmnop [~204a(204
| TAODTAAF O A€Y%
203b~ ——ZEEREAATEFAELR {_o0ap
Y NHWIZAENEITFIILTHEER |
i y N~V
> 208 202b 202a 202b 209
202

200

U.S. Patent Jul. 12, 2016 Sheet 3 of 29 US 9,389,746 B2

FIG. 3A

ABCDEFGHIJKLMNOP

= A LIMTTIRTILR LR LR s ————— AL A AR AR AR LY

| EEX
TZ23456/7/786907 1¥%% #
abcdefghijk!mnop
TADIAIF oA AEI4
—ZZAAREAATETAERE
HWOIABMESIFCELTHER

TSSSSRSSRSSSSISY > SSISSSSSSY
1
]
i
)
1
Ry Sy P UYL YU ——

I

FI1G. 3B

Taana v A

TOX
ABCDEFGHI JKLMNOP
aBrdslnbiLkAuvéEno
12345678907 1¥%$#
abcdefghijklmnop
T7A ;3?#073ﬂZ§ty9

WhANE/ANATETAERR
FJAEhELFCILTEEL

27277

VIOTS:

U.S. Patent Jul. 12, 2016 Sheet 4 of 29 US 9,389,746 B2

TTSTSTTOCCY

] =]

ABCDEFGHI JKLMNOP
aBrdelnbrrAuvéno
12345678807 !¥%$#
abcdefghijklmnop
TARIANX OSSR YE |
—ZZHARtENAATETFAEER

HNWOAEHESIFIELTHER

AT v

. ABCYDEFGHI JKLMNOP |
e roooess
345678907 |¥%$#
cdefghijklmnop
DIANFOTAYIRAEVS
ZEMANREAATATRERR
HNIZBMESFISLTEER

NAMAAAATRRRR AR RN

2222272

12
ab
74

CITIITA

[2272

U.S. Patent

Jul. 12, 2016

ABC
aBr

12 3]

abece
747

HWD

Sheet 5 of 29

FIG. 4A

— SIS SSAN -——::—::-\
| iy |
i

N
N
N
N
N
\
N

DEFGHI JKLMNOP :
b elNnOirkAUvERO E
5678907 |%¥%$# 5
efghijklimnop]
P EX Rk D & AL |
ARtEAATETFAERE f

FIG. 4B

SSITINSSSSXY

\\\\\\

ZZ

ABCDEFGH! JKLMNOP
:aﬁrdsgnebnluv
| 12345678907 !%[p$#

TAUIAAFITAYI RV S
—Z=MAANtEAATETFERR
BN ABHhESIFIILTHER

222272 27T

abcdefghijkimfhop |

SSSSSSSUSTSY ISSSSSSSSSSSSFH—————~~ =4

US 9,389,746 B2

U.S. Patent Jul. 12, 2016 Sheet 6 of 29 US 9,389,746 B2

FIG. 4C
"""" [= - - |

ABCDEFGHIJKLM*OP
eBr6elnNOLKAUVRETRO
12345678907 !¥KLs$#
abcdefghijklmpop
74¢11ﬁ$07:ﬁ9i§y&

—ZZRARENAATETAFEER
HVWOIABHESIFISLIRER

Lissssnaasuuae: ARTLRRRRAR RS

| ABCDEFGH! JKLMNOP
L a eElnOLkAuvimno
' 12385678907 |¥%$#
iabcfiefghijkimnop
 FAOEANFIAY SRRV S
 —ZZEAAREAATEFAERR
BVWOREMESIFIELTEHER

(IR Y L A ALY " STEISS

272722227

N
\
N
N
N
\
]

U.S. Patent

l‘\\\\\\\\\\\\ CNNNANNNNNN

Jul. 12, 2016

FIG. 5A

Sheet 7 of 29

US 9,389,746 B2

P 200

EANNNAMNNNNNNNNSAMNNNNAANANT

O X

203b~
Po
203a~¢

:
SN
K
N
N
N
N
N
N
N
N
N

501

777777777 7

LTSI IIIIIIIS"

SR ARRRRRRIRSRNRS R ENNNSNY

FIG. 5B

AAARNLLRARRNNRRRRRARNGNN

206

" —_— 'T—'="-—=’_=_-‘= OUONNNNRANNNNNNANNY BDONODSNSNNINSNNNNNNNNT
i
g_.___,;_j 06|
\
N
§ s
N N
N N~ P(Px, Py) \
Ps R
| !
| 1
Byl o~ Q(0x, Q)
| P7 & |
) S’ 5 Q
K 3
’ Q \
N
§ \ N
N
X N N
—_— e f—y -——-—-'?.——..—- OOV AN SN AAANNNANNANT | RN

"C, ~C(Cx, Gy)

U.S. Patent Jul. 12, 2016 Sheet 8 of 29 US 9,389,746 B2

g SR) FIG. 6

. B

ACQUIRE OPERATION INFORMATION
OF FIRST BUTTON AND
MOVING AMOUNT INFORMATION

NO

FIRST BUTTON
OFF—~ON?

DRAGGING OF ANOTHER BORDER

BORDER STARTED?
S604 5605
{ LEFT BORDER 203 |)
DETERMINE CURSOR PV
CORNER POSITION C1% Cy) PROCESSING BY DRAGGING
AND POSITION Gl) OF OF ANOTHER BORDER

DISPLAY CONTENTS

| J

ACQUIRE OPERATION INFORMATION [~ S606
OF FIRST BUTTON, AND UPDATE
CURSOR POSITION COORDINATE

S607
FIRST BUTTON
?
608 ON:
A
Cx = Px C B0)

NO

CURSOR ON
FIRST REGION?

S610 S611
! Y {
AQx = APX AQx =0
- |
\
UPDATE DISPLAY OF ~ 5612
CURSOR AND WINDOW

U.S. Patent Jul. 12, 2016 Sheet 9 of 29 US 9,389,746 B2

FI1G. 7A
. 700
203b ~N
o L
" memo !
203a—~} @
Q
O Q
2030-~ & ’\&{
T
\
X
502
FIG. 7B
700 203b
<
\ —-200
N O O
) | memo |

U.S. Patent Jul. 12, 2016 Sheet 10 of 29 US 9,389,746 B2

FIG. 7C

~200

L -203a

U.S. Patent Jul. 12, 2016 Sheet 11 of 29 US 9,389,746 B2

FI1G. 8A

Y
N \\\\.\Q\\\\l S k\\\\\.§\\\\V

f X 202b 202a 202b
502

FIG. 8B

Q
O
/\OR zokza

202h s

~—200

U.S. Patent Jul. 12, 2016 Sheet 12 of 29 US 9,389,746 B2

FI1G. 8C

290 7(')1 20/2a

202b —%

US 9,389,746 B2

Sheet 13 of 29

Jul. 12, 2016

U.S. Patent

0 80¢
60C~
UZRLNRZTA>BYGREYCVZ
EFSYLBELUVINTERE"— c0s
SABLARCLGEYRTGIL))
SINJINOD AY1dSIA douw|yliybjyepoge
40 %0 OL ONIINOdSIHHOO INIOd : %8 FO%ki ,0618.09G67E21L
MOANIM 40 ON3 LHOIH HIMOT: %0 PuIATYN gL ST20 Ly A
dONWIMrilHD43a08Y
REC] \
r~ —
0le oomx v L02

SINTINOD AV1dSIA AHYHLIGHY 40 NOILISOd : %0

Ve Ol4d

U.S. Patent Jul. 12, 2016 Sheet 14 of 29 US 9,389,746 B2

FIG. 9B

_____________C/)j __________ 200
ABCDEEGH LJIKIMNOP F_
o) @B Y YA

90274 1 2345678302 1 %% #
abcgdefghijklmnop

FAYTANE LAY LR EY S 001
| —=AmAREAATETHELR
| BUARBDEHIEILTRES [o &

502
FIG. 9C
Qo 200
| ABGCDEEG I_-I—l—)j K I”MN Q I'if-_j'-----___1
s02--1 @87 £ E s

= = :
.12345678@0?!¥°$# |
labddefghijkimrdiop |
TAYIANF o5 AYSRYV S
—~ZJWUAEAREAATETAGERE
) |

~-901

U.S. Patent

Jul. 12, 2016 Sheet 15 of 29

US 9,389,746 B2

iy

sio (s) FIG. 10

Y

ACQUIRE OPERATION INFORMATION
OF FIRST BUTTON AND MOVING
AMOUNT INFORMATION

51002

FIRST BUTTON
OFF—>ON?

NO

S1003

DRAGGING OF

ANOTHER
CORNER STARTED?

815)04

S1005
LOWER RIGHT ')
CORNER 209

WINDOW RESIZING
DETERMINE P(Px, Py), G(Cx, Cy),

PROCESSING BY DRAGGING
B(BX, By), AND Q(Qx, Qy) OF ANOTHER CORNER

: ot

Yy

ACQUIRE OPERATION INFORMATION L_g1006
OF FIRST AND SECOND BUTTONS,

AND UPDATE CURSOR

POSITION COORDINATE

S1007

FIRST BUTTON
ON?

YES ,
C(Cx, Cy) = P(Px, Py) C e)

NO

81908

S1009

SECOND BUTTON NO
ON?
81?10

A

S1011
{

(AQx, AQy) = (APx, APY)

(AQx, AQy) =(0,0)
- |
>

UPDATE DISPLAY OF ~S51012
CURSOR AND WINDOW

U.S. Patent Jul. 12, 2016 Sheet 16 of 29 US 9,389,746 B2

FIG. 11
=
FIRST REGION
ezzzza SECOND REGION 12801 /’1 200
QR(QRY, QRY)« | N \p
— 1\
QL(QLx, QLy) N1205 N |
N Ny Y208
1208~) oy [
v L a0
1 1/ 1
/I /I
Y o /I 1204
() () : S 5
‘ X 1207 |1208 1202
502

BL(BLx, BLy)

U.S. Patent Jul. 12, 2016 Sheet 17 of 29 US 9,389,746 B2
r— /> h
A B D R L FIRST REGION
N
1301~ N1 23456789
y 11 2 3 456 7 8 9 |~]CURSOR:
11\ 2 7 9 SECOND REGION
N 345678 SECOND BUTTON:
. SECOND REGION OFF
(X — SCROLLING ON
502 [7 5 0 € € E BOTH SIDES: OFF
i B 456 7 8 9
~] : /
1?(02 5 3 4 5 6 7 8 9 |T]CURSOR:
: 5 456 7 8 9 FIRST REGION
z ¢ - SECOND BUTTON:
. ! v ! ON
f X P - | e SCROLLING ON
502 5 E £ ; BOTH SIDES: ON
\ :
1303~ B 456789123
Y p 45067809123 %%%%?\J%REGION
l 3 4 56 789 1 2 3| |SECOND BUTTON:
: ON
£ X —— SCROLLING ON
502 § } LEFT SIDE: OFF
D E E F GR i SCROLLING ON
| \ : RIGHT SIDE: ON
1304~ | B 45 6 78 9 1
v ; b 4 5 6 7 8 9 1 CURSOR:
: g FIRST REGION
l 5 P45 6 78 3 1 |secoND BUTTON:
- 042 X — SCAOLLING ON
, N LEFT SIDE:
A-B D E E F Gf SCROLLING ON
3 RIGHT SIDE; OFF
1305~ N7 8 9 1
5
;7 8 9 {1

U.S. Patent Jul. 12,2016

oy

Sheet 18 of 29

US 9,389,746 B2

FIG. 14

i

(START)
S1 4?101

ACQUIRE OPERATION INFORMATION
OF FIRST BUTTON AND MOVING
AMOUNT INFORMATION

S1402
FIRST BUTTON
OFF—-0ON?

S1403 Y&

DBAGGING OF
BOUNDARY STARTED
?

31404
! BOUNDARY 1205

ANOTHER S1405
{

WINDOW RESIZING
PROCESSING BY

DETERMINE P(Px, Py), BL(BLx, BLY),
QL(QLx, QLy), AND QR(QRx, QRy)

DRAGGING OF
ANOTHER
BOUNDARY

|

\

ACQUIRE OPERATION INFORMATION
OF FIRST AND SECOND BUTTONS,
AND UPDATE CURSOR
POSITION COORDINATE

~ 51406

NO

A
(END)

S1407
FIRST BUTTON
?
S 12108 ON:
FIRST

Blx =
REGION i

51409

SECOND 1

SECOND REGION

BUTTONON| DETERMINE CURSOR POSITION
AND ON / OFF OF SECOND BUTTON

SECOND BUTTON OFF

FIRST REGION
| S1311 | SECOND BUTTON OFF |

8142110

SECOND REGION
SECOND
BUTTONON |

S1413
{

AQLx = APX, AQLx = APx, AQLX
AQRX = APx AQRx=0

=,
AQRX =

AQlLx =0,
AQRx =0

APX

/\/
|) S1412 ¥

Fowt-at:

Y

UPDATE DISPLAY OF
CURSOR AND WINDOW

~S1414

U.S. Patent Jul. 12, 2016 Sheet 19 of 29 US 9,389,746 B2

FIG. 15A

FIRST REGION
s=~5=1 SECOND REGION

f.

I

LLLLLLIALAN N N NN S NN N N N NN

LLLLLI I

VAT AP AT ATH VA ONNNNNNNNNNN\N\N\N\\N

ek ————

502

FIG. 15B

FIRST REGION
===~ SECOND REGION

<—

AL AN N NN\

WA SN\ A NNNNNNNN\\\

502

U.S. Patent Jul. 12, 2016 Sheet 20 of 29 US 9,389,746 B2

FIG. 16
600
\
N T
1601~ | e Q&_
0 O /é B»v
&
'\&2 Ej Q

<
> [tlisii A

~—a

502

U.S. Patent Jul. 12, 2016 Sheet 21 of 29 US 9,389,746 B2

FIG. 17A

FIG. 17B

U.S. Patent Jul. 12, 2016 Sheet 22 of 29 US 9,389,746 B2

FI1G. 18A

U.S. Patent Jul. 12, 2016 Sheet 23 of 29 US 9,389,746 B2

FIG. 19A

U.S. Patent Jul. 12, 2016 Sheet 24 of 29 US 9,389,746 B2

FIG. 20

(START)

Y

S2001

DRAGGING
STARTED?

OBJECT
THAT CONTACTS
DRAGGED
BORDER?

OBJECT
THAT CONTACTS
OPPOSING
BORDER?

S2004 S2006

AOx = (ABx, ABx) AOx = (0, 0)

- r |

A

|

UPDATE DISPLAY OF OBJECT [~ 52007

U.S. Patent Jul. 12, 2016 Sheet 25 of 29 US 9,389,746 B2

FIG. 21

B
ABCDEFGHIJKLMNOP
aBrdeldniLekAuvéEnc
12345678907 !¥%$ #
abcdefghijklImnop
TADIFAF oI AV S
—Z_=ZMAREAATETAEKRE
HNWIZAENESIFISILTEER

U.S. Patent Jul. 12, 2016 Sheet 26 of 29 US 9,389,746 B2

FI1G. 22A

L [y
ABCDEFGHI JKLM
aBrosl{n8LKALY
12345678907 !
abcdefghijklim
| 7TADIAAF LAY R
—Z—ZAREAALTETA
HWOABhrELIFIELT

FI1G. 22B

o [
ABCDEFGHI JKLMHOP
aBrdédeldnbiLrAuvi{imo
f\»o1234567890?!¥%$#
! abcdefghijkimiop
i TAIIAAFI IRV S
; —ZZEAREAATEFAEER

HWOABhESTIELTIER

U.S. Patent Jul. 12, 2016 Sheet 27 of 29 US 9,389,746 B2

FI1G. 22C

ABCDEFGHI!IJKLMNOP
aBrdelnfirkAiuvéno
12345678907 !%¥%%#
abcdefghljklmnop

— _:.E/\t NA+BFAERR
HWOABMhEKIJZELTHEHEL

__

[COX

ABCDEFGHIJKLMNOP
aBrdslinbikAuviEnoc
12345678907 !¥%$#
abcdefghijklmnop
PAOTH hEhraHi, 20M4
—_ZAAREAATEFAERRE
HWIZAENESIFIIELTEER

U.S. Patent

Jul. 12, 2016 Sheet 28 of 29

FIG. 23A

ABCDEFGH ! JKLIJ
aBroelnliLrAul
1234567890713
abcdefghijkln

TADIAhF o8]

Emo
£% $ #

SV

——=W{AENRtEANTET

inop |
%R |

HODZABMESITIELTEHETR

ABCDEFGHI JKL]J
aBrdéel{nbireAu
1234567890713
abcdefghijklIlij
TADITADF 270401

NOP
Eno
% $ #
nop
gAY

—ZZPAERtEAATBETAELSR
HNOIABDPESHIELTEETR

US 9,389,746 B2

U.S. Patent

Jul. 12, 2016 Sheet 29 of 29
FI1G. 23C
| x|
ABGCDEFGHI JKL

aBrdelndikiu

12345678907 !
abcdefghijkl

—ZZHAEREAATETRERR
HBUWOIABDEKITISLTHRER

FI1G. 23D

I EE)

ABCDEFGH I JKLJ
aBrdoeldnliLrAiAu

INOP
Eno

12345678907 !f%$#
abcdefghijklimnop
A9 TIAhEoradL VS

—ZZEPARtEAATETARER

BLdabhE<FoaLy

BER

US 9,389,746 B2

US 9,389,746 B2

1
INFORMATION PROCESSING APPARATUS
AND CONTROL METHOD THEREOEF, AND
COMPUTER PROGRAM

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of application Ser. No.
12/170,994, filed Jul. 10, 2008, the entire disclosure of which
is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an information processing
apparatus and control method thereof, and a computer pro-
gram.

2. Description of the Related Art

Conventionally, an information processing system, which
can simultaneously execute a plurality of applications with
user interfaces, can display a plurality of windows corre-
sponding to the applications at the same time, and can control
the respective windows to serve as independent user inter-
faces.

In such a case, the information processing system can
display the plurality of windows by one of the following
methods. A method of overlapping the windows at arbitrary
locations according to the rule of a predetermined priority
order upon displaying the respective windows is available
(overlap method). Also, a method of tiling the windows with-
out overlapping each other upon displaying the respective
windows is available (tiling window method). In general,
when many windows need to be displayed within a limited
display screen, the overlap method is more effective.

Most of windows allow modification of their sizes and
locations in the X and Y directions independently or simul-
taneously. When the overlap method is used, the windows
need to be moved or resized to avoid completely covered
windows as a result of window overlap.

When a plurality of applications run in parallel, and corre-
sponding windows are displayed at the same time, a display
controller of an information processing apparatus displays a
window to be prioritized or a window selected by the user for
access in front of all other windows in each case. The whole
area of the window displayed in front of all other windows is
displayed, and partial areas of other windows are displayed
based on their overlapping states.

However, in this situation, when the user wants to fre-
quently access a window hidden by other windows or to refer
to its contents, the user needs to make a predetermined opera-
tion for windows. This operation includes that of switching
display to locate a desired window in front of all other win-
dows and that of downsizing or moving the windows located
in front of the target window.

In general, upon resizing a window (e.g., to reduce its size),
it becomes difficult to display all the contents displayed
before resizing within the resized window. For this reason,
only partial contents to be prioritized are displayed. The
sequence for determining such part to be prioritized is
executed either automatically or manually.

A window is resized by dragging one border or corner of
the window. The window is moved by dragging a specific
region which is not used for resizing.

Uponresizing a window, there is a specification prepared in
advance for each window type, and display control upon
resizing is performed based on the specification. More spe-
cifically, a specification that moves the display contents upon

10

15

20

25

30

35

40

45

50

55

60

65

2

dragging when a window is resized by dragging one border or
corner is available. Also, a specification that does not move
the display contents irrespective of dragging is available.
Furthermore, a specification that moves the display contents
to have a predetermined ratio with respect to dragging or
reduces or modifies them is available.

These specifications are determined in advance for respec-
tive window types or for respective places to be dragged even
on one window. Note that in the present specification, moving
the display contents of a window upon resizing the window
will be referred to as “scrolling”.

A general display control method upon resizing a window
will be described below.

FIG. 21 shows the configuration of a window to be dis-
played on a display device. FIG. 21 shows a window that
displays a document. FIGS. 22A to 22D and FIGS. 23A to
23D are explanatory views of popular display control meth-
ods upon resizing a window.

FIGS. 22A to 22D are views showing cases in which the
window shown in FIG. 21 is resized by dragging one of the
four borders.

In general, upon resizing the window by moving the right
or bottom border of the four borders, the display contents near
the border opposite to the border to be moved remain
unchanged, and those near the border to be moved are
changed. FIGS. 22A and 22C show the cases in which the
window size is reduced by moving the right or bottom border.
In these cases, the display contents near the border to be
moved are gradually hidden.

Upon resizing the window by moving the left or top border
of'the four borders, the display contents near the border to be
moved remain unchanged, and those near the border opposite
to the border to be moved are changed. FIGS. 22B and 22D
show the cases in which the window size is reduced by mov-
ing the left or top border. In these cases, the display contents
near the right or bottom border opposite to the border to be
moved are gradually hidden.

FIGS. 23A to 23D show cases in which the window shown
in FIG. 21 is resized by dragging the corners of the window.
Note that the corners of the window mean the intersections of
the respective borders that define the window.

As shown in FIGS. 23A to 23D, when the window is
resized by dragging the upper left, upper right, lower left, and
lower right corners of the window, the display contents near
the upper left corner remain unchanged, and those near other
corners are gradually hidden.

The concept of the display control shown in FIGS. 22A to
22D and FIGS. 23A to 23D is to basically preferentially
display the left and up directions of the display contents of a
window. On the other hand, many windows which aim at the
drawing function and display of general figures do not always
preferentially display the left and up directions, and different
specifications are determined in advance for respective win-
dow types.

Many specifications associated with resizing of a window
are designed to naturally locate the contents to be prioritized
at a display position if the user normally makes a resizing
operation. However, a part that the user wants to display does
not always move to the display position, and an operation for
individually shifting the position of the display contents after
resizing is often required.

Most windows have scroll bars to shift the position of the
display contents. In general, the user can move the contents
that the user wants to display or access to the position within
the window by operating the scroll bar.

US 9,389,746 B2

3

The inventions that improve the operations for resizing a
window by dragging, for example, a predetermined part of the
window are disclosed in Japanese Patent Nos. 2765615 and
3431795.

On the other hand, a certain window often configures par-
ent and child windows defined by predetermined specifica-
tions so as to prevent related windows from being uneasy to
see due to overlap display or to prevent correspondence
between the related windows from confusing.

The inventions that relate to a method of controlling the
relationship between the parent and child windows upon
resizing a window are disclosed in Japanese Patent Laid-
Open No. 9-185480 and Japanese Patent No. 3586351.

In order to resize (especially, reduce) a window and to
preferentially display a desired part, use of the display control
specification determined in advance for each window type
does not suffice. In many cases, the user needs to perform two
operations step by step in such a manner that the user is
required to scroll the display contents by a predetermined
amount in a predetermined direction after resizing. Such
requirement results in inefficiency upon making various
operations on a computer, thus decreasing productivity
accordingly.

SUMMARY OF THE INVENTION

Embodiments of the present invention provides a tech-
nique that allows the user to arbitrarily and intuitively per-
form an operation for moving a desired part to be prioritized
to apredetermined location concurrently with resizing during
resizing a window.

According to an exemplary embodiment of the present
invention, there is provided an information processing appa-
ratus comprising, display unit configured to display a win-
dow, accepting unit configured to accept a resize instruction
of the displayed window together with a scroll instruction
indicating whether or not to scroll display contents within the
window, and control unit configured to control a size of the
window and a scrolling of the display contents within the
window based on contents of the resize instruction and the
scroll instruction, wherein when the scroll instruction indi-
cates that the display contents are to be scrolled, the control
unit changes the window to a size indicated by the resize
instruction, and scrolls the display contents according to a
change amount of the window, and when the scroll instruction
indicates that the display contents are not to be scrolled, the
control unit changes the window to a size indicated by the
resize instruction, and suppresses a scrolling of the display
contents.

According to another exemplary embodiment of the
present invention, there is provided a method of controlling
an information processing apparatus comprising, displaying
a window on a display unit, accepting a resize instruction of
the displayed window together with a scroll instruction indi-
cating whether or not to scroll display contents within the
window, and controlling a size of the window and a scrolling
of the display contents within the window based on contents
of the resize instruction and the scroll instruction, wherein
when the scroll instruction indicates that the display contents
are to be scrolled, the window is changed to a size indicated
by the resize instruction, and the display contents are scrolled
according to a change amount of the window, and when the
scroll instruction indicates that the display contents are not to
be scrolled, the window is changed to a size indicated by the
resize instruction, and scrolling of the display contents is
suppressed.

25

40

45

50

4

Further features of the present invention will become
apparent from the following description of exemplary
embodiments with reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a block diagram showing an example of the
hardware arrangement of an information processing appara-
tus according an embodiment of the invention;

FIG. 1B shows an example of the arrangement of a mouse
as an example of an operation unit 109 according the embodi-
ment of the invention;

FIG. 1C shows an example of the arrangement of a digital
pen and tablet as an example of the operation unit 109 accord-
ing the embodiment of the invention;

FIG. 2 shows an example of the configuration of a window
according the embodiment of the invention;

FIGS. 3A to 3D show display examples when the user
locates a cursor on a first or second region of a top border 201
or bottom border 202 of a window and drags it according to
the first embodiment of the invention;

FIGS. 4A to 4D show display examples when the user
locates the cursor on a first or second region of a left border
203 or right border 204 of a window and drags it according to
the first embodiment of the invention;

FIG. 5A is a view for explaining ON/OFF switching of
scrolling upon resizing according to the first embodiment of
the invention;

FIG. 5B is a view for explaining ON/OFF switching of
scrolling upon resizing when the cursor position is changed
from the display state of FIG. 5A;

FIG. 6 is a flowchart showing an example of window resiz-
ing processing according to the first embodiment of the inven-
tion;

FIG. 7A shows an example of a state in which the size of a
window 200 matches that of a whole display screen 700
according to the second embodiment of the invention;

FIG. 7B shows an example of a state in which the size of the
window 200 changes when the user locates a cursor 701 on a
second region 2035 and drags it in the X direction according
to the second embodiment of the invention;

FIG. 7C shows an example of a state in which the size of the
window 200 changes when the user locates the cursor 701 on
a first region 203a and drags it in the X direction according to
the second embodiment of the invention;

FIG. 8A shows an example of a state in which the size of the
window 200 matches that of the whole display screen 700
according to the second embodiment of the invention;

FIG. 8B shows an example of a state in which the size of the
window 200 changes when the user locates the cursor 701 on
a second region 2025 and drags it in the'Y direction according
to the second embodiment of the invention;

FIG. 8C shows an example of a state in which the size of the
window 200 changes when the user locates the cursor 701 on
a first region 2024 and drags it in the Y direction according to
the second embodiment of the invention;

FIG. 9A shows an example of a state before the beginning
of dragging when the user locates a cursor P on a corner 209
(P0) in a display control method according to the third
embodiment of the invention;

FIG. 9B shows an example of a state in which the user
moves the cursor P from the position P0 on the corner 209 to
a position P1 in the display control method according to the
third embodiment of the invention;

FIG. 9C shows an example of a state in which the user
moves the cursor P from P1 to P2 in the display control
method according to the third embodiment of the invention;

US 9,389,746 B2

5

FIG. 10 is a flowchart showing an example of window
resizing processing according to the third embodiment of the
present invention;

FIG. 11 shows an example of a window including a plural-
ity of sub-windows;

FIG. 12 is a view for explaining the fourth embodiment of
the invention taking as an example a window which is divided
into left and right sub-windows as first and second sub-win-
dows;

FIG. 13 shows an example of a change in display contents
when the user moves a boundary in a window divided by one
boundary according to the fourth embodiment of the inven-
tion;

FIG. 14 is a flowchart showing an example of window
resizing processing according to the fourth embodiment of
the invention;

FIGS.15A and 15B show division examples of boundaries;

FIG. 16 shows an example of display contents of a window
according to the fiftth embodiment of the invention;

FIGS. 17A and 17B show display examples when the user
resizes (reduces) the window by dragging one border of the
window according to the fifth embodiment of the invention;

FIGS. 18A and 18B show display examples when the user
resizes the window by dragging one corner of the window
according to the fiftth embodiment of the invention;

FIGS. 19A and 19B show display examples that allow a
normally hidden part to be easier to see according to the fifth
embodiment of the invention;

FIG. 20 is a flowchart showing an example of window
resizing processing corresponding to the display examples
shown in FIGS. 17A and 17B;

FIG. 21 shows the configuration of a window displayed on
a display device;

FIGS. 22 A to 22D show cases in which the user resizes the
window shown in FIG. 21 by dragging one of four borders;
and

FIGS. 23 A to 23D show cases in which the user resizes the
window shown in FIG. 21 by dragging one of four corners of
the window.

DESCRIPTION OF THE EMBODIMENTS

Embodiments of the invention will be described hereinaf-
ter with reference to the accompanying drawings.

The present invention provides a technique which arbi-
trarily controls, concurrently with dragging, whether or notto
scroll the display contents of a window in response to drag-
ging upon resizing the window by dragging an element (bor-
der, corner, boundary, etc.) which configures the window.

In particular, the present invention proposes the following
three control techniques.

The first control technique covers a case in which the user
resizes a window by mainly dragging one border of the win-
dow. This technique is characterized in that a direction com-
ponent, which is not directly related to resizing, of those of the
cursor motion upon movement is used in control. In corre-
sponding embodiments, two different regions are formed on
each border of a window, and ON/OFF of scrolling can be
controlled concurrently with dragging by selecting that
region while dragging.

The second control technique is characterized in that
ON/OFF of scrolling is controlled by operating a button other
than that for dragging of'an operation unit upon making a drag
movement. This technique can be applied to both a case of
dragging a corner and that of dragging a border.

The third control technique executes control by cooperat-
ing the first and second control techniques. With this tech-

25

40

45

60

65

6

nique, on a window including a plurality of sub-windows,
each sub-window is resized by dragging a boundary of the
sub-window. In case of the window including the plurality of
sub-windows, since each boundary is independently con-
trolled, this technique can also be applied to a window includ-
ing many sub-windows.

First Embodiment

The first embodiment of the invention will be described
hereinafter. This embodiment will explain an embodiment
that relates to the first control technique.

FIG. 1A is a block diagram showing an example of the
hardware arrangement of an information processing appara-
tus used to implement the present invention. Referring to FI1G.
1A, a CPU 101 executes an OS, application programs, and the
like stored in an HD (hard disk) 103, and controls to tempo-
rarily store information, files, and the like required for execu-
tion of the programs in a RAM 102. The RAM 102 serves as
a main memory, work area, and the like of the CPU 101. The
HD 103 stores the application programs, driver programs, the
OS, control programs, a processing program required to
execute processing according to this embodiment, and the
like.

A display unit 104 displays information according to com-
mands input from an operation unit 109, externally acquired
information, and the like. The display unit 104 may adopt any
display method of CRT type, liquid crystal type, PDP type,
SEDtype, and organic EL type. The display unit 104 displays
a window according to this embodiment. A network interface
(to be referred to as “I/F”” hereinafter) 105 is a communication
interface used to connect a network. A ROM 106 stores pro-
grams such as a basic I/O program and the like.

An external storage drive 107 can load programs and the
like stored in a medium 108 to this computer system. The
medium 108 as a storage medium stores predetermined pro-
grams and related data. The operation unit 109 is a user
interface used to accept operations and instructions from an
operator of this apparatus, and comprises a keyboard, mouse,
digital pen, and the like. A system bus 110 controls the flow of
data in the apparatus.

Note thata mouse, digital pen, and tablet as examples of the
operation unit 109 can have the arrangements shown in, for
example, FIGS. 1B and 1C. In this case, the mouse and tablet
are connected to an information processing apparatus 100
using USB connections, and can serve as the operation unit
109.

A mouse 120 shown in FIG. 1B can constitute a part of the
operation unit 109. The mouse 120 has the left button 121 and
the right button 122. Although not shown, the bottom surface
of'the mouse 120 comprises a structure for detecting a moving
amount and direction of the mouse 120 using a mechanical
mechanism using a ball or an optical mechanism using an
optical sensor.

A digital pen 130 and tablet 140 shown in FIG. 10 can
constitute a part of the operation unit 109. The digital pen 130
can comprise a tip switch 131 at the pen tip, and a side switch
132 on the side surface. The tip switch 131 corresponds to the
left button 121 of the mouse 120, and the side switch 132
corresponds to the right button 122 of the mouse 120. The tip
switch 131 can be turned on by pressing it against the tablet
140. The side switch 132 can be turned on when the operator
holds it down with the finger.

The tablet 140 comprises a pressure-sensitive or electro-
static contact sensor, and can detect the position of the digital
pen 130 when the tip of the digital pen 130 is pressed against
the tablet 140. When the operator moves the digital pen 130

US 9,389,746 B2

7

while pressing the tip against the tablet 140, the tablet 140 can
detect the moving direction and amount of the digital pen 130.
Note that the tablet 140 may be integrated with the display
unit 104.

An example of the configuration of a window according to
the embodiment of the invention will be described below with
reference to FIG. 2. FIG. 2 shows an example of the configu-
ration of a window according to the embodiment of the inven-
tion.

Referring to FIG. 2, a window 200 has a rectangular shape,
and is defined by four borders, that is, a top border 201,
bottom border 202, left border 203, and right border 204. The
window 200 has four corners 207, 208, 209, and 210. The
corner 207 is defined as an intersection between the top bor-
der 201 and left border 203, the corner 208 is defined as an
intersection between the left border 203 and bottom border
202, the corner 209 is defined as an intersection between the
bottom border 202 and right border 204, and the corner 210 is
defined as an intersection between the right border 204 and
top border 201.

In this embodiment, each border is divided into two differ-
ent regions, that is, first and second region. More specifically,
the first region is located to include the center of the border,
and the second region is located to include the end portions of
the border, and to sandwich the first region. For example, on
the top border 201, a first region 201« including the center of
the border is located to be sandwiched between second
regions 2015 including the end portions of the border.

As the division method of the first and second region, each
border may be equally divided into three or the first region
may be slightly longer or shorter than the length obtained
when the border is equally divided into three regions. This
embodiment will exemplify a case in which one border is
equally divided into three regions.

The window 200 includes a title bar 205 and display area
206. The title bar 205 displays information corresponding to
the content displayed in the display area 206. For example,
when the display area 206 displays document data, the title
bar 205 displays a document name. The display area 206
displays the contents of data to be displayed. The display area
206 displays the contents of a document for a document file,
or displays a corresponding image or graphic information for
an image or graphic file.

In this embodiment, the window can be resized by drag-
ging one of the four borders of the window based on the
operation of the operation unit 109, and moving the selected
border in a direction perpendicular to that border. That is, in
this embodiment, the drag operation corresponds to a window
resize instruction operation. As will be described in detail
below, the present invention is characterized in that the win-
dow resize instruction, including a scroll instruction indicat-
ing whether or not to scroll the display contents within the
window, is accepted.

Note that this embodiment uses “drag” as a term that rep-
resents the concept to be described below. A case will be
examined first wherein the mouse shown in FIG. 1B is used as
the operation unit 109 to have default settings of Microsoft
Windows®. In this case, the display position of a cursor
displayed on the screen of the display unit 104 is controlled in
response to the movement of the mouse 120. When the user
presses the left button 121 while the cursor is located on a
target to be selected, that target to be selected is highlighted.
In this embodiment, moving the cursor by moving the mouse
120 in this state will be referred to as “dragging”.

A case will be examined below wherein the digital pen 130
and tablet 140 shown in FIG. 1C are used as the operation unit
109. In this case, the display position of the cursor displayed

10

15

20

25

30

35

40

45

50

55

60

65

8

on the screen of the display unit 104 is controlled in response
to the position of the digital pen 130 pressed against the tablet
140. When the user presses the digital pen 130 against the
tablet 140 at a position corresponding to the display position
of a target to be selected, the target to be selected is high-
lighted. In this embodiment, moving the cursor by moving the
digital pen 130 on the tablet 140 in this state will be referred
to as “dragging”.

FIGS. 3A to 3D show display examples according to this
embodiment when the user drags the cursor while locating it
on the first or second region of the top border 201 or bottom
border 202 of the window in the display state of FIG. 2. FIGS.
4A to 4D show display examples according to this embodi-
ment when the user drags the cursor while locating it on the
first or second region of the left border 203 or right border 204
of'the window in the display state of FIG. 2. Note that a frame
indicated by the dotted line in each figure represents a frame
corresponding to the window 200 in FIG. 2 before resizing.

As shown in FIGS. 3A and 3C and FIGS. 4A and 4C, when
the user drags the cursor while the user locates it on the first
region (region 201a, 2024, 2034, or 204a), the display con-
tents near a border (first border) where the cursor is located
remain unchanged. On the other hand, the display contents
near a border (second border) opposite to the border (first
border) where the cursor is located are changed so as to be
hidden in turn by the second border.

In FIGS. 3A and 3C and FIGS. 4A and 4C, it can also be
considered as if the display contents were moving in corre-
spondence with the movement of the border. In this embodi-
ment, such change in display contents will be referred to as
“resizing with scrolling”. Also, a state in which the display
contents of the display area 206 are moved and displayed in
correspondence with the movement of the border will be
referred to as “with scrolling”, “the display contents are
scrolled”, or “scrolling the display contents”.

As shown in FIGS. 3B and 3D and FIGS. 4B and 4D, when
the user drags the cursor while the user locates it on the
second region (2015, 2025, 2035, or 2045), the display con-
tents near a border (first border) where the cursor is located
are changed. More specifically, the display contents are
changed so as to be hidden in turn by the first border. On the
other hand, the display contents near a border (second border)
opposite to the border (first border) where the cursor is
located remain unchanged.

In FIGS. 3B and 3D and FIGS. 4B and 4D, it can also be
considered as if the display contents are fixed with respect to
the movement of the border. In this embodiment, such change
in display contents will be referred to as “resizing without
scrolling”. A state in which the display contents on the display
area 206 are fixedly displayed with respect to the whole
display screen will be referred to as “without scrolling”, “the
display contents are not scrolled”, or “not scrolling the dis-
play contents”.

Inthis embodiment, “resizing with scrolling” and “resizing
without scrolling” can be executed during resizing in a con-
tinuous drag operation. That is, the resizing with scrolling and
that without scrolling can be switched in real time during a
continuous, single drag operation. Hence, the user can resize
the window while adjusting the display position.

Switching between the resizing with scrolling and that
without scrolling will be described below with reference to
FIGS. 5A and 5B. FIGS. 5A and 5B are views for explaining
that switching according to this embodiment.

A case will be examined below wherein the user reduces
the window 200 by dragging the left border 203 of the win-
dow and moving it in a direction of an arrow 501 (right
direction), as shown in FIG. 5A. Note that the width and

US 9,389,746 B2

9

height directions of the window 200 respectively match the X
and Y directions of an X-Y coordinate system 502 set on the
display screen where the window 200 is displayed. P0 repre-
sents an initial position of the cursor.

FIG. 5B expresses a state in which a position P(Px, Py) of
the cursor is continuously changed like P0—P1—-P2—P3 or
P5—P6—P7—P8 during a single drag operation. Note that
P(Px, Py) is a coordinate value based on the X-Y coordinate
system 502 set on the display screen.

In FIG. 5B, let Ly be the length of the left border 203, and
C(Cx, Cy) be the position of the corner 208 corresponding to
the lower end of the left border 203 to be dragged. Note that
Cx corresponds to the position of the left border 203 in the X
direction. Also, let Q(Qx, Qy) be the position of arbitrary
display contents on the display area 206 of the window 200.
Note that the respective coordinates are based on the afore-
mentioned X-Y coordinate system 502.

While dragging the left border 203, since the position Cx of
the left border 203 in the X direction follows an X component
of the cursor position (it is not related to a Y component), it
can be expressed by:

Cx=Px (6]

From equation (1), since the cursor is kept located on the
left border during dragging, a condition required to locate the
cursor on the first region is described by:

Ly/3=Py-Cy=2Ly/3

Likewise, a condition required to locate the cursor on one of
the second regions 2035 of the left border 203 is described by:

0<Py-Cy<Ly/3 or 2Ly/3<Py-Cy<Ly

Therefore, upon making a drag operation while the cursor
is located on the second region to attain the resizing without
scrolling, this process can be expressed in association with
the point Q by:

AQx=0 @

where AQx is a difference between Qx at the beginning of the
resizing without scrolling, and Qx after the window is resized.

Likewise, upon making a drag operation while the cursoris
located on the first region to attain the resizing with scrolling,
this process can be expressed in association with the position

Qby:

AQx=ACx=AP ©)

where AQx is a difference between Qx at the beginning of the
resizing with scrolling, and Qx after the window size is
resized. Likewise, ACx and APx are differences between Cx
and Px at the beginning of the resizing with scrolling, and Cx
and Px after the window is resized. Note that these differences
correspond to change amounts of the window 200 in the X
direction.

Upon application of the above concept to FIG. 5B, when
the cursor position falls within a range from P0 to P1, and
from P2 to P3, since the cursor belongs to the second region
2035, AQx=0, and the resizing without scrolling is executed.
When the cursor position falls within a range from P1 to P2,
since the cursor belongs to the first region 203a, AQx=APx,
and the resizing with scrolling is executed.

That is, while the cursor begins to be dragged from P0 and
is continuously dragged to be moved to P3, the position of the
left border 203 of the window 200 moves from C0 to C3
according to the X component of the cursor, thus resizing the
window. During this operation, the “resizing with scrolling”
and “resizing without scrolling” are executed concurrently
according to a change in position of the cursor in the Y
direction.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

The same applies to a case in which the user upsizes the
window by moving the cursor position like
P5—P6—=P7—P8. That is, when the cursor position falls
within a range from P5 to P6 and from P7 to P8, since the
cursor belongs to the second region 2035, AQx=0, and the
resizing without scrolling is executed. When the cursor posi-
tion falls within a range from P6 to P7, since the cursor
belongs to the first region 203a, AQx=APx, and the resizing
with scrolling is executed.

That is, while the cursor begins to be dragged from P5 and
is continuously dragged to be moved to P8, the position of the
left border 203 of the window 200 moves from C3 to C0
according to the X component of the cursor, thus resizing the
window. During this operation, the “resizing with scrolling”
and “resizing without scrolling” are executed concurrently
according to a change in position of the cursor in the Y
direction.

Note that the case has been exemplified in FIG. 5B wherein
the left border 203 is dragged. Also, the same applies to the
case wherein the top, bottom, and right borders (borders 201,
202, and 204) are dragged.

The sequence of the aforementioned window resizing pro-
cessing will be described below with reference to the flow-
chart of FIG. 6. FIG. 6 is a flowchart showing an example of
the window resizing processing according to the first embodi-
ment. The processing corresponding to the flowchart shown
in FIG. 6 is implemented when the CPU 101 reads out a
corresponding processing program stored in the HD 103 onto
the RAM 102 and executes that program to control respective
components.

Note that FIG. 6 describes a case wherein the user resizes
the window by dragging the left border 203 of the window
200. However, the embodiment of the invention is not limited
to the case wherein the left border 203 is dragged. That is, the
same processing as in FIG. 6 can resize the window by drag-
ging the top border 201, bottom border 202, and right border
204.

In step S601, the CPU 101 acquires operation information
(information of a first instruction operation) of a first button of
the mouse 120 or digital pen 130 of the operation unit 109,
and information (moving information) of the moving direc-
tion and amount of the mouse 120 or digital pen 130. Note that
the first button (first operation unit) corresponds to the left
button 121 of the mouse 120 if the mouse 120 is used in the
default settings of Microsoft Windows®. Also, the first button
corresponds to the tip switch 131 at the pen tip of the digital
pen 130.

The CPU 101 determines in step S602 based on the opera-
tion information of the first button acquired in step S601
whether or not the first button is switched from OFF to ON. If
it is determined that the first button is switched to ON (“YES”
in step S602), the process advances to step S603. On the other
hand, if it is determined that the first button is kept OFF
without being switched to ON (“NO” in step S602), the
process returns to step S601 to continue the processing.

In step S603, the CPU 101 calculates the position coordi-
nate of the cursor (cursor position coordinate) based on the
moving amount information acquired in step S601 to deter-
mine on which border of the window 200 the cursor is located.
This determination process can be attained by seeing which
of predetermined regions set based on the first and second
regions of the borders that configure the window 200 includes
the cursor position coordinate.

If it is determined that the cursor is located on the left
border 203 of the window 200 (“left border” in step S603), it
can be determined that the user begins to drag the left border
203. In this case, the process advances to step S604. On the

US 9,389,746 B2

11

other hand, if the cursor is located on one of the remaining
borders (on one of the top border 201, bottom border 202, and
right border 204) (“another border” in step S603), it can be
determined that the user begins to drag another border. In this
case, the process advances to step S605. In step S605, the
CPU 101 executes window resizing processing by dragging
of another border.

In step S604, the CPU 101 determines the cursor position
coordinate P(Px, Py) at the beginning of dragging, as shown
in FIG. 5A, for the window which begins to be dragged. Also,
the CPU 101 determines the position C(Cx, Cy) of the corner
208 at the lower end of the left border 203 and the position
Q(Qx, Qy) of the arbitrary display contents, as shown in FIG.
5B.

In step S606, the CPU 101 further acquires the operation
information of the first button and the moving amount infor-
mation, and updates the cursor position coordinate P(Px, Py)
based on the moving amount information. The CPU 101 then
determines in step S607 whether or not the first button is kept
ON. If the first button is not kept ON but is switched to OFF
(“NO” in step S607), this processing ends. In this case, a
so-called “drop” operation is made.

On the other hand, if the first switch is kept ON (“YES” in
step S607), the process advances to step S608. In step S608,
the CPU 101 sets the X position (Cx) of the left border 203 of
the window 200 to match the X component (Px) of the cursor
position coordinate updated in step S606. In this way, the
position of the left border 203 follows the movement of the
cursor in the X direction.

The CPU 101 determines in step S609 based on the cursor
position coordinate updated in step S606 whether or not the
cursor is located on the first region. If it is determined that the
cursor is located on the first region (“YES” in step S609), the
process advances to step S610. On the other hand, if it is
determined that the cursor is located on the second region
(“NO” in step S609), the process advances to step S611.

In step S610, the CPU 101 sets the moving amount AQx of
the position Q of the arbitrary display contents in the X
direction to be equal to the moving amount APx of the cursor
in the X direction, so as to scroll the display contents upon
resizing the window. On the other hand, in step S611, the CPU
101 sets the moving amount AQx to be zero so as to suppress
scrolling of the display contents upon resizing the window.

In step S612, the CPU 101 updates display of the cursor
and window 200 based on the position of the left border 203
determined in step S608 and the moving amount AQx deter-
mined in step S610 or S611. After that, the process returns to
step S606 to continue the processing.

Note that a loop from step S606 to step S612 represents
cursor movement during dragging, that is, that dragging is
continued and resizing of the window is in progress during
this loop. When the control leaves this loop, this represents
that the drop operation is made to settle the window size.

As described above, according to this embodiment, since
each border of the window is divided into two different
regions, and the change method ofthe display contents within
the window can be controlled based on the selected region.
Since the region can be selected in real time during resizing of
the window, the position of the display contents within the
window can be controlled simultaneously with resizing. In
this way, a desired display result can be obtained by a series of
operations, thus improving the work efficiency.

Second Embodiment

The second embodiment of the invention will be described
hereinafter. This embodiment will explain an embodiment
that extends the first control technique.

10

15

20

25

30

35

40

45

50

55

60

65

12

Upon displaying a window on a display unit 104, the fol-
lowing three display states are normally available:

1. a display state in which both the height and width of the
window are maximized to fit a whole display screen (so-
called full screen display);

2. adisplay state in which only one icon or title is displayed
in a small size (so-called minimum display); and

3. adisplay state in which the window occupies only a part
of'the display screen.

The display states 1 and 3 will be compared. In case of the
display state 1, since the window itself is fixed, there is no
trouble upon handling the window. However, in order to refer
to another window, a switching operation for canceling the
full screen display state is required.

On the other hand, in case of the display state 3, there is a
merit of allowing the user to refer to a plurality of windows,
but it is troublesome since the sizes and locations of the
respective windows need to be determined and organized.
Especially, when arelatively large window completely covers
a relatively small window, the user needs to move the upper
window to an appropriate location to access the lower win-
dow, resulting in inconvenience.

In this embodiment, in order to allow use of a window of a
type that considers the merits of both the display states, win-
dow display of the first embodiment is applied to so-called
“full screen display”.

As described above, in “full screen display”, a window is
maximized in the X and Y directions of the display screen of
the display unit 104, and is fixed in size. The window cannot
be resized unless the full screen display state is canceled.

By contrast, in the full screen display according to this
embodiment, a window is maximized in only one ofthe X and
Y directions within the display screen, and is fixed in size in
that direction. In the remaining direction, one border is fixed
to the end of the display screen, and only the other border is
movable by dragging. By operating this border that can be
dragged, the window can be resized in one direction.

FIGS. 7A to 7C show examples of full screen display
according to this embodiment. In FIGS. 7A to 7C, reference
numeral 700 denotes a whole display screen of the display
unit 104. Since the window configuration is the same as that
in FIG. 2 of the first embodiment, corresponding reference
numerals will be used. A left border 203 of a window 200
includes first region 203a and second regions 2035. The user
can drag the first and second regions 203« and 2035 using a
cursor 701. The directions of the whole display screen 700
and window 200 are determined based on an X-Y coordinate
system 502.

FIG. 7A shows a state in which the size of the window 200
matches that of the whole display screen 700. That is, FIG. 7A
corresponds to the full screen display state.

FIG. 7B shows a state in which the window 200 is resized
when the user locates the cursor 701 on the second region
2035 and drags it in the X direction. By dragging in the X
direction using the second region 2035, the size of the win-
dow 200 changes in only the X direction. At this time, a right
border 204 opposite to the dragged left border 203 is fixed to
the end of the display area, and only the left border 203 can be
dragged. With this movement, the window is resized in one
direction. Note that the window 200 is fixed in a maximum
sizein theY direction perpendicular to the dragging direction.
Note that in case of FIG. 7B, since the second region 2035 is
used, resizing without scrolling described in the first embodi-
ment is executed.

FIG. 7C shows a state in which the window is resized when
the user locates the cursor 701 on the first region 203a and
drags it in the X direction. By dragging in the X direction

US 9,389,746 B2

13

using the first region 203a, the size of the window 200
changes in only the X direction. At this time as well, the right
border 204 opposite to the dragged left border 203 is fixed to
the end of the display area, and only the left border 203 can be
dragged. With this movement, the window 200 is resized in
one direction. Note that the window 200 is fixed in a maxi-
mum size in the Y direction perpendicular to the dragging
direction. Note that resizing with scrolling described in the
first embodiment is executed since the first region 203q is
used at this time.

In FIGS. 7A to 7C, the left border 203 is used as a border
having a function of resizing the window. However, any of the
remaining three borders which configure the window 200
may be used as a border having a function of resizing the
window. For example, FIGS. 8A to 8C show a case using a
bottom border 202. That is, FIG. 8 A shows an example of a
state in which the size of the window 200 according to this
embodiment matches that of the whole display screen 700.
FIG. 8B shows an example of a state in which the window 200
is resized when the user locates the cursor 701 on a second
region 2025 and drags it in the Y direction according to this
embodiment. FIG. 8C shows an example of a state in which
the window is resized when the user locates the cursor 701 on
a first region 2024 and drags it in the Y direction according to
this embodiment. One and only difference between FIGS. 8A
to 8C and FIGS. 7A to 7C is a border used to resize the
window.

Note that in this embodiment, a border that is movable can
also be referred to as a “movable border”, a border located at
aposition opposite to the movable border can also be referred
to as a “first fixed border (opposing fixed border)”, and the
remaining two borders can also be referred to as a “second
fixed border” and “third fixed border”.

In case of FIGS. 7A to 7C, the left border 203 corresponds
to the movable border, the right border 204 corresponds to the
first fixed border (opposing fixed border), and a top border
201 and the bottom border 202 respectively correspond to the
second and third fixed borders. In case of FIGS. 8 A to 8C, the
bottom border 202 corresponds to the movable border, the top
border 201 corresponds to the first fixed border (opposing
fixed border), and the left and right borders 203 and 204
respectively correspond to the second and third fixed borders.

Note that the display position on a display area 206 of the
window 200 can be controlled in the same manner as in the
first embodiment. However, an only difference is that the first
and second regions given to all the four borders in the first
embodiment are limited to only one border in this embodi-
ment.

As described above, the window according to this embodi-
ment is maintained in a maximized state in one of the X and
Y directions (width and height directions). Therefore, upon
reordering a plurality of windows, a one-dimensional posi-
tional relationship need only be considered. As a result, com-
pared to reordering of windows in consideration of a two-
dimensional positional relationship, an operation can be
simplified very much, thus greatly eliminating complexity.

Since the window can be resized, a window hidden below
the upper window can be displayed compared to a case in
which a window is completely maximized in both the X and
Y directions, thus improving convenience.

Also, such window can be defined as a fourth window
display state in addition to the aforementioned window dis-
play states 1 to 3.

Note that the point of this embodiment is not limited to that
the window can be resized in one direction in the full screen
display state, but it lies in that the display position of the
display contents within the window can be controlled at the

5

10

15

20

25

30

35

40

45

55

60

14

time of the drag operation in combination with the invention
according to the first embodiment.

Third Embodiment

The third embodiment of the invention will be described
hereinafter. This embodiment will explain an embodiment
which relates to the second control technique.

The aforementioned first embodiment has proposed the
display control method upon resizing the window by drag-
ging one of the borders which configure the window. This
method is effective in the case in which the window is often
resized by mainly dragging the border. Especially, this
method is very effective for the window which is maximized
in only one direction, as described in the second embodiment.

However, a normal window can be resized by dragging one
of its corners, as shown in FIGS. 23A to 23D. Whether each
user drags the border or corner to resize such normal window
depends on favor of the user, the display contents of indi-
vidual applications, individual work contents, and the like.

This embodiment proposes a method that can control
ON/OFF of scrolling during resizing in real time as in the first
embodiment even upon resizing a window by dragging its
corner.

In the display control method according to the aforemen-
tioned first embodiment, upon resizing a window by dragging
its border, ON/OFF switching of scrolling upon resizing is
controlled based on the cursor position in the direction per-
pendicular to the dragging direction. However, upon resizing
awindow by dragging its corner, the cursor movement needs
to be instructed two-dimensionally. That is, since both the X
and Y components of the cursor movement get directly
involved in the movement ofthe corner, one component of the
cursor movement cannot be used in switching control
between resizing with scrolling and that without scrolling.

Hence, this embodiment uses ON/OFF of a second button
of'a mouse 120 or digital pen 130 of an operation unit 109 in
switching control between resizing with scrolling and that
without scrolling upon resizing a window. Note that the sec-
ond button (second operation unit) corresponds to a right
button 122 of the mouse 120 in the default settings of
Microsoft Windows®. On the other hand, the second button
corresponds to a side switch 132 on the side surface of the
digital pen 130. Also, the second button may be assigned to a
specific key such as a control key.

The operation of the display control method according to
this embodiment will be described below with reference to
FIGS. 9A to 9C. FIG. 9A shows a state before the beginning
of dragging, in which the user locates a cursor P on a corner
209 (P0). FIG. 9B shows a state in which the user moves the
cursor P from the position P0 to a position P1 of the corner
209. Upon this cursor movement, the user turns on the second
button to execute the resizing with scrolling. Furthermore,
FIG. 9C shows a state in which the user moves the cursor P
from P1 to P2. Upon this cursor movement, the user turns off
the second button to execute the resizing without scrolling.

Note thata dotted line 901 in FIGS. 9B and 9C indicates the
size of a window 200 before resizing. The contents within a
dotted line 902 indicate the display contents falling outside
the window 200 after resizing.

It should be noted that the first button is kept ON during
dragging irrespective of ON/OFF of the second button.

FIGS. 9A 10 9C are views for explaining the display control
method of this embodiment by adopting the configuration of
the window corresponding to FIG. 2, but they omit descrip-
tions of first and second regions for the sake of simplicity.
Note that the third embodiment can be practiced in combina-

US 9,389,746 B2

15

tion with the first embodiment, and this embodiment can be
applied to the window shown in FIG. 2, which has the first and
second regions, just in case.

This embodiment can assure similar operations on any of
four corners 207 to 210 of the window 200, and the following
description will be given taking as an example a case in which
the user drags the lower right corner 209.

In FIGS. 9A to 9C, parameters are defined as follows. Let
C(Cx, Cy) be the position of the corner 209 of the window
200, B(Bx, By) be the position of a point corresponding to
that immediately below the point C in an initial state of the
display contents within the window, and Q(Qx, Qy) be the
position of arbitrary display contents within the window.
Note that respective coordinate values are based on an X-Y
coordinate system 502 set with respect to the display screen.
Assume that the position C changes like C0, C1, and C2, the
position B changes like B0, B1, and B2, and the position Q
changes like Q0, Q1, and Q2 in correspondence with the
movement of the cursor position from P0 to P1 and to P2.

Atthebeginning of dragging, as shown in FIG. 9A, the user
locates the cursor position P at the position of the lower right
corner 209, and switches the first button from OFF to ON
there. At this time, P0=C0=B0.

During the movement of the cursor position from P0 to P1
after the beginning of dragging in FIG. 9B, the corner 209 of
the window 200 moves to follow the cursor, and the display
contents within a display area 206 also move to follow the
cursor (since they are scrolled). At this time, P1=C1=B1. That
is, the relationship among P, C, B, and Q can be expressed by:

AC(ACX,ACy)=AP(APx,APy) 4

AB(ABx,ABy)=AP(APx,APy) (5)

AQ(AQx AQy)=AP(APX,APy)

where A indicates a change amount.

Furthermore, during the movement of the cursor position
from P1 to P2 in FIG. 9C, the corner 209 of the window
similarly moves to follow the cursor P. However, the display
contents within the display area 206 do not follow the cursor
movement since they are not scrolled in this case. At this time,
P2=C22B2 (=B1). That is, the relationship among P, C, B,
and Q can be expressed by:

Q)

AC(ACX,ACy)=AP(APx,APy) (7

AB(ABx,ABy)=(0,0) (8)

AQAOx,AQy)=(0,0) ©

The sequence of the aforementioned window resizing pro-
cessing will be described below with reference to the flow-
chart of FIG. 10. FIG. 10 is a flowchart showing an example
of the window resizing processing according to the third
embodiment. The processing corresponding to the flowchart
shown in FIG. 10 is implemented when a CPU 101 reads out
a corresponding processing program stored in an HD 103
onto a RAM 102 and executes that program to control respec-
tive components.

Note that FIG. 10 describes a case in which the user resizes
the window by dragging the lower right corner 209 of the
window 200. The embodiment of the invention is not limited
to the case in which the lower right corner 209 is dragged.
That is, the same processing as in FIG. 10 can resize the
window by dragging the upper left corner 207, lower left
corner 208, and upper right corner 210.

In step S1001, the CPU 101 acquires operation information
(information of a first instruction operation) of a first button of
the mouse 120 or digital pen 130 of the operation unit 109,

25

30

35

45

50

55

60

65

16

and information (moving information) of the moving direc-
tion and amount of the mouse 120 or digital pen 130. Note that
the first button corresponds to the left button 121 of the mouse
120 if the mouse 120 is used in the default settings of
Microsoft Windows®. Also, the first button corresponds to a
tip switch 131 at the pen tip of the digital pen 130.

The CPU 101 determines in step S1002 based on the opera-
tion information of the first button acquired in step S1001
whether or not the first button is switched from OFF to ON. If
it is determined that the first button is switched to ON (“YES”
in step S1002), the process advances to step S1003. On the
other hand, if it is determined that the first button is kept OFF
without being switched to ON (“NO” in step S1002), the
process returns to step S1001 to continue the processing.

In step S1003, the CPU 101 calculates the position coor-
dinate of the cursor P (cursor position coordinate) based on
the moving amount information acquired in step S1001 to
determine on which corner of the window 200 the cursor is
located. This determination process can be attained by seeing
which of predetermined regions set based on the corners that
configure the window 200 includes the cursor position coor-
dinate.

If it is determined that the cursor is located on the lower
right corner 209 of the window 200 (“lower right corner 209
in step S1003), it can be determined that the user begins to
drag the lower right corner 209. In this case, the process
advances to step S1004. On the other hand, if the cursor is
located on one of the remaining corners (on one of the corners
207,208, and 210) (“another” in step S1003), it can be deter-
mined that the user begins to drag another corner. In this case,
the process advances to step S1005. In step S1005, the CPU
101 executes window resizing processing by dragging of
another corner.

In step S1004, the CPU 101 determines the position coor-
dinates P(Px, Py), C(Cx, Cy), B(Bx, By), and Q(Qx, Qy) at
the beginning of dragging, as shown in FIG. 9A, for the
window which begins to be dragged. Note that the definitions
of respective coordinates are the same as those described
above.

In step S1006, the CPU 101 further acquires the informa-
tion of the first instruction operation and moving amount
information, and also operation information of a second but-
ton (information of a second instruction operation) of the
mouse 120 or digital pen 130 of the operation unit 109. Also,
the CPU 101 updates the cursor position coordinate P(Px, Py)
based on the moving amount information. The CPU 101 then
determines in step S1007 whether or not the first button is
kept ON. If the first button is not kept ON but is switched to
OFF (“NO” in step S1007), this processing ends. In this case,
a so-called “drop” operation is made.

On the other hand, if the first switch is kept ON (“YES” in
step S1007), the process advances to step S1008. In step
S1008, the CPU 101 sets the position C(Cx, Cy) of the lower
right corner 209 of the window 200 to match the cursor
position P(Px, Py) updated in step S1006. In this way, the
position of the lower right corner 209 follows the cursor
movement.

The CPU 101 determines in step S1009 based on the opera-
tion information of the second button acquired in step S1006
whether or not the second button is ON. Ifit is determined that
the second button is ON (“YES” in step S1009), the process
advances to step S1010. On the other hand, ifit is determined
that the second button is OFF (“NO” in step S1009), the
process advances to step S1011.

In step S1010, the CPU 101 sets the moving amount
AQ(AQx, AQy) of the position Q of the arbitrary display
contents to be equal to the moving amount AP(APx, APy) of

US 9,389,746 B2

17

the cursor. In this way, the display contents are scrolled by a
size corresponding to the change amounts of the window 200
in the X and Y directions. On the other hand, in step S1011,
the CPU 101 sets the moving amount AQ to be (0, 0). In this
case, the display contents are not scrolled.

In step S1012, the CPU 101 updates display of the cursor
and window 200 based on the position of the lower right
corner 209 determined in step S1008 and the moving amount
AQ determined in step S1010 or S1011. After that, the process
returns to step S1006 to continue the processing.

Note that a loop from step S1006 to step S1012 represents
cursor movement during dragging, that is, that dragging is
continued and resizing of the window is in progress during
this loop. When the control leaves this loop, this represents
that the drop operation is made to settle the window size.

As described above, according to this embodiment, the two
different operation buttons of the operation unit 109 are used,
and the change method of the display contents within the
window can be controlled based on combinations of the but-
ton operations. Since the combinations of the button opera-
tions can be changed in real time during resizing of the win-
dow, the position of the display contents within the window
can be controlled simultaneously with resizing. In this way, a
desired display result can be obtained by a series of opera-
tions, thus improving the work efficiency.

Note that the case has been explained wherein the window
is resized by mainly dragging the corner of the window.
However, the display control method according to this
embodiment can be applied to a case wherein the window is
resized by dragging its border. In this case, ON/OFF of'scroll-
ing upon resizing can be controlled by the same operations in
case of dragging the corner and that of dragging the border.

Note that the display control method (first control tech-
nique) according to the first embodiment and that (second
control technique) according to this embodiment can be com-
pared as follows.

The first control technique is effective upon attaching
importance to resizing by dragging a border, and is especially
effective in case of the second embodiment. In consideration
of only the case of dragging the border, the first control
technique can achieve the desired resizing by a simpler opera-
tion than the second control technique.

By contrast, the second control technique is effective for
the case including probability of dragging of both the corner
and border, and the case that also attaches importance to
dragging of the corner. Using the second control technique,
the desired resizing can be achieved by common operation to
the case of dragging the corner and that of dragging the
border.

Fourth Embodiment

The fourth embodiment of the invention will be described
hereinafter. This embodiment will explain an embodiment
that relates to the aforementioned third control technique.

This embodiment will explain display control of the
present invention, which is applied to a case in which a
window includes a plurality of sub-windows, and each sub-
window is resized by dragging a boundary between the neigh-
boring sub-windows.

Some applications display using a window defined by a
single area, and some other applications display using a win-
dow including a plurality of sub-windows. FIG. 11 shows an
example of the latter application. In this case, using the plu-
rality of sub-windows, the display efficiency can be improved
compared to a case of a single window, and a more comfort-
able user interface can be provided.

10

15

20

25

30

35

40

45

50

55

60

18

When a window includes a plurality of sub-windows, it is
a common practice to resize each sub-window in the window
by dragging a boundary between the neighboring sub-win-
dows. Atthis time, in the conventional window configuration,
ON/OFF of'scrolling upon resizing needs to be determined in
advance for each sub-window in case of resizing, or a scroll
operation needs to be done after resizing.

For example, the left or top part of the display contents in
each sub-window is preferentially displayed in some cases.
This is based on the same situation as a window defined by a
single area, that is, the idea that the first character of a sen-
tence and the first line of a page are to be preferentially
displayed.

Therefore, in an example of a window divided into left and
right sub-windows, upon resizing the sub-windows by drag-
ging a boundary, the display contents of the left sub-window
are not scrolled, and those of the right sub-window are
scrolled. Likewise, in an example of a window divided into
upper and lower sub-windows, the display contents of the
upper sub-window are not scrolled, and those of the lower
sub-window are scrolled.

By contrast, this embodiment provides a display control
method that allows to concurrently switch ON/OFF of scroll-
ing of sub-windows on two sides of a boundary in real time
during resizing upon resizing by dragging the boundary.
Hence, in this embodiment, the need for fixing ON/OFF of
scrolling in advance can be obviated unlike in the related art.

Display control processing according to this embodiment
will be described below. In this embodiment, in order to
control whether or not to scroll the display contents for each
sub-window, the following four control modes are available.
Note that a case will be examined below wherein a window
includes a sub-window on the first side with respect to a
boundary, and that on the second side.

Control mode 1. resizing with scrolling of both the sub-
windows on the first and second sides

Control mode 2. resizing with scrolling of the sub-window
on the first side and that without scrolling of the sub-window
on the second side

Control mode 3. resizing without scrolling of the sub-
window on the first side and that with scrolling of the sub-
window on the second side

Control mode 4. resizing without scrolling of both the
sub-windows on the first and second sides

Note that the relationship between the sub-windows on the
first and second sides can be considered as that between
neighboring sub-windows on, for example, the left and right
sides or the upper and lower sides of the boundary.

FIG. 12 is a view for explaining this embodiment taking as
an example a window which is divided into left and right
sub-windows as the first and second sub-windows. Note that
the boundary that the user can drag is one boundary per drag
operation, and the same display control applies to a window
divided into upper and lower sub-windows as in that divided
into the left and right sub-windows.

In FIG. 12, a window 1200 is defined by borders 1201,
1202, 1203, and 1204, and has sub-windows 1207, 1208, and
1209 partitioned by boundaries 1205 and 1206.

Each of the boundaries 1205 and 1206 is divided into two
regions. In FIG. 12, the upper half region is called a first
region, and the lower half region is called a second region.
Note that the division method is merely an example, and is not
limited to that shown in FIG. 12. For example, the same
division method of each border in the first embodiment may
be adopted.

In FIG. 12, the position of a cursor P can be expressed by
P(Px, Py) based on an X-Y coordinate system 502 set on the

US 9,389,746 B2

19

display screen on which the window 1200 is displayed. Let
LBy be the length of the boundary 1205 within the window
1200, and BL(BLx, BLy) be the position of an intersection
between the lower end of the boundary 1205 and the lower
border 1202. Note that BLx corresponds to the position of the
boundary 1205 in the X direction.

Note that a condition (condition 1) required to locate the
cursor P on the first region is described by:

LBy2<Py-BLy<LBy

Likewise, a condition (condition 2) required to locate the
cursor P on the second region is described by:

0<Py-BLy<LBy/2

Let QL(QLx, QLy) be the position of arbitrary display
contents within the sub-window 1207 on the left side of the
boundary 1205, and QR(QRx, QRy) be the position of arbi-
trary display contents within the sub-window 1208 on the
right side. The boundary 1205 will be described below. How-
ever, the scroll control of the display contents upon resizing
the sub-windows with reference to the boundary 1206 can be
similarly executed.

Upon execution of resizing without scrolling of the sub-
windows in case of a drag operation, the following expression
can be made in association with the positions QL and QR:

AQLx=AQRx=0 (10)

where AQLx and AQRx are differences of QLx and QRx
before and after resizing of the sub-windows.

Likewise, upon execution of resizing with scrolling of the
sub-windows, the following expression can be made in asso-
ciation with the positions QL and QR:

AQLx=AQRx=APx (11

where AQLx and AQRx are differences of QLx and QRx
before and after resizing of the sub-windows. Likewise, APx
is a difference of Px before and after resizing of the sub-
windows. Note that these differences correspond to the
change amounts of the boundary 1205 in the X direction.

In this embodiment, the four types of resizing control of the
control modes 1 to 4 are switched by combining dragging of
the cursor which is located on either the first or second region,
and ON/OFF of the second button operation.

In the control mode 1, the cursor located on the first region
is dragged, and the second button is ON.

In the control mode 2, the cursor located on the first region
is dragged, and the second button is OFF.

In the control mode 3, the cursor located on the second
region is dragged, and the second button is ON.

In the control mode 4, the cursor located on the second
region is dragged, and the second button is OFF.

In this way, the display control method according to this
embodiment simultaneously uses control based on the posi-
tion of the cursor in the Y directionused in the first and second
embodiments, and control based on the second button of the
operation unit 109 used in the third embodiment in coopera-
tion with each other. In case of any of the above four patterns,
switching between resizing with scrolling and that without
scrolling for each of the sub-windows on the two sides is
controlled concurrently during the single, continuous drag
operation and cursor movement. The start and continuation of
dragging are controlled by ON/OFF of the first button of the
operation unit 109 as in the above embodiments.

FIG. 13 shows an example of a change in display contents
when the user moves a boundary on a window divided by the
single boundary.

10

15

30

35

40

45

50

55

20

In FIG. 13, reference numeral 1301 denotes a state before
beginning of dragging. In this state, a left sub-window dis-
plays alphabetical letters “ABD”, and a right sub-window
displays three rows of numerals “1” to “9”.

In this display state of the window 1301, when the user
locates the cursor on the second region, and drags it while the
second button is OFF, a display state of a window 1302 is set.
Atthis time, since both the left and right sub-windows are not
scrolled, letters “EE” hidden on the left sub-window are
newly displayed. On the other hand, on the right sub-window,
“1” and “2” are fully hidden and “3” is partially hidden by the
movement of the boundary.

When the user locates the cursor on the first region and
drags it while the second button is ON, a display state of a
window 1303 is set. Since both the left and right sub-windows
are scrolled, the display contents near the boundary remain
unchanged, but those near the left and right borders of the
window are changed.

Furthermore, when the user locates the cursor on the sec-
ond region and drags it while the second button is ON, a
display state of a window 1304 is set. At this time, only the
right sub-window is scrolled. Hence, alphabetical letters
“FG” hidden on the left sub-window are newly displayed near
the boundary. On the other hand, on the right sub-window,
numerals “1 2 3” near the right border of the window, which
were displayed on the window 1303, are hidden.

Moreover, when the user locates the cursor on the first
region and drags it while the second button is OFF, a display
state like a window 1305 is set. At this time, only the left
sub-window is scrolled. Hence, on the left sub-window,
alphabetical letters “AB” hidden near the left border of the
window are displayed. On the other hand, since the right
sub-window is not scrolled, numerals “3 4 5 6 are hidden by
the boundary.

The sequence of the aforementioned window resizing pro-
cessing will be described below with reference to the flow-
chart of FIG. 14. FIG. 14 is a flowchart showing an example
of the window resizing processing according to the fourth
embodiment. The processing corresponding to the flowchart
shown in FIG. 14 is implemented when a CPU 101 reads out
a corresponding processing program stored in an HD 103
onto a RAM 102 and executes that program to control respec-
tive components.

Note that FIG. 14 describes a case in which the user resizes
the sub-windows by dragging the boundary 1205 of the win-
dow 1200. However, the embodiment of the invention is not
limited to the case in which the boundary 1205 is dragged.
That is, the same processing as in FIG. 14 can resize the
sub-windows by dragging the boundary 1206 or another
boundary.

Instep S1401, the CPU 101 acquires operation information
(information of a first instruction operation) of a first button of
amouse 120 or digital pen 130 of the operation unit 109, and
information (moving information) of the moving direction
and amount of the mouse 120 or digital pen 130. Note that the
first button corresponds to a left button 121 of the mouse 120
if the mouse 120 is used in the default settings of Microsoft
Windows®. Also, the first button corresponds to a tip switch
131 at the pen tip of the digital pen 130.

The CPU 101 determines in step S1402 based on the opera-
tion information of the first button acquired in step S1401
whether or not the first button is switched from OFF to ON. If
it is determined that the first button is switched to ON (“YES”
in step S1402), the process advances to step S1403. On the
other hand, if it is determined that the first button is kept OFF
without being switched to ON (“NO” in step S1402), the
process returns to step S1401 to continue the processing.

US 9,389,746 B2

21

In step S1403, the CPU 101 calculates the position coor-
dinate of the cursor P (cursor position coordinate) based on
the moving amount information acquired in step S1401 to
determine on which boundary of the window 1200 the cursor
is located. This determination process can be attained by
seeing which predetermined region set based on the bound-
aries included in the window 1200 includes the cursor posi-
tion coordinate.

Ifitis determined that the cursor is located on the boundary
1205 of the window 1200 (“boundary 1205 in step S1403),
it can be determined that the user begins to drag the boundary
1205. In this case, the process advances to step S1404. On the
other hand, if the cursor is located on one of the remaining
boundaries (on the boundary 1206 or the like) (“another” in
step S1403), it can be determined that the user begins to drag
another boundary. In this case, the process advances to step
S1405. In step S1405, the CPU 101 executes window resizing
processing by dragging of another boundary.

In step S1404, the CPU 101 determines the position coor-
dinates P(Px, Py), BL(BLx, BLy), QL(QLx, QLy), and
QR(QRx, QRy) at the beginning of dragging, as shown in
FIG. 12, for the window which begins to be dragged. Note
that the definitions of respective coordinates are the same as
those described above.

In step S1406, the CPU 101 further acquires the informa-
tion of the first instruction operation and moving amount
information, and also operation information of the second
button (information of a second instruction operation) of the
mouse 120 or digital pen 130 of the operation unit 109. Also,
the CPU 101 updates the cursor position coordinate P(Px, Py)
based on the moving amount information. The CPU 101 then
determines in step S1407 whether or not the first button is
kept ON. If the first button is not kept ON but is switched to
OFF (“NO” in step S1407), this processing ends. In this case,
a so-called “drop” operation is made.

On the other hand, if the first switch is kept ON (“YES” in
step S1407), the process advances to step S1408. In step
S1408, the CPU 101 sets the X component BLx of the end
position BL. of the boundary 1205 to match the X component
Px of'the cursor position P updated in step S1406. In this way,
the position of the boundary 1205 follows the cursor move-
ment.

The CPU 101 determines in step S1409 based on the coor-
dinate Py of the cursor position in the Y direction obtained in
step 1406 on which of the first and second regions the cursor
P is located and based on the operation information of the
second button if the second button is ON.

If'the cursor P is located on the first region, and the second
button is ON, the process advances to step S1410. If the cursor
P is located on the first region, and the second button is OFF,
the process advances to step S1411. Furthermore, if the cursor
P is located on the second region, and the second button is
ON, the process advances to step S1412. Moreover, if the
cursor P is located on the second region, and the second
button is OFF, the process advances to step 1413.

In step S1410, the CPU 101 sets the moving amount AQLx
of the position QL of the arbitrary display contents in the X
direction on the left sub-window 1207 as the first side of the
boundary 1205 to be equal to the moving amount APx of the
cursor Pinthe X direction. Also, the CPU 101 sets the moving
amount AQRx of the position QR of the arbitrary display
contents in the X direction on the right sub-window 1208 as
the second side of the boundary 1205 to be equal to the
moving amount APx of the cursor P in the X direction. As a
result, the display contents on the sub-windows are scrolled
by asize corresponding to the change amount of the boundary
1205 in the X direction.

10

15

20

25

30

35

40

45

50

55

60

65

22

In step S1411, the CPU 101 sets the moving amount AQILx
of the position QL of the arbitrary display contents in the X
direction on the left sub-window 1207 as the first side of the
boundary 1205 to be equal to the moving amount APx of the
cursor P inthe X direction. Also, the CPU 101 sets the moving
amount AQRx of the position QR of the arbitrary display
contents in the X direction on the right sub-window 1208 as
the second side of the boundary 1205 to be zero. In this way,
the display contents on the left sub-window 1207 are scrolled
by a size corresponding to the change amount of the boundary
1205 in the X direction. On the other hand, the display con-
tents on the right sub-window 1208 are not scrolled.

In step S1412, the CPU 101 sets the moving amount AQILx
of the position QL of the arbitrary display contents in the X
direction on the left sub-window 1207 as the first side of the
boundary 1205 to be zero. Also, the CPU 101 sets the moving
amount AQRx of the position QR of the arbitrary display
contents in the X direction on the right sub-window 1208 as
the second side of the boundary 1205 to be equal to the
moving amount APx of the cursor P in the X direction. In this
way, the display contents on the left sub-window 1207 are not
scrolled. On the other hand, the display contents on the right
sub-window 1208 are scrolled by a size corresponding to the
change amount of the boundary 1205 in the X direction.

In step S1413, the CPU 101 sets the moving amount AQILx
of the position QL of the arbitrary display contents in the X
direction on the left sub-window 1207 as the first side of the
boundary 1205 to be zero. Also, the CPU 101 sets the moving
amount AQRx of the position QR of the arbitrary display
contents in the X direction on the right sub-window 1208 as
the second side of the boundary 1205 to be zero. In this way,
the display contents on the sub-windows 1207 and 1208 are
not scrolled.

In step S1414, the CPU 101 updates displays of the cursor
and window 1200. The CPU 101 executes this updating pro-
cess based on the position BLx of the boundary 1205 deter-
mined in step S1408, and the moving amounts AQLx and
AQRx determined in any of steps S1410 to S1413. After that,
the process returns to step S1406 to continue the processing.

Note that a loop from step S1406 to step S1412 represents
cursor movement during dragging, that is, that dragging is
continued and resizing of the window is in progress during
this loop. When the control leaves this loop, this represents
that the drop operation is made to settle the window size.

The operation of this embodiment has been described.
Note that the same display control method according to this
embodiment can be applied to not only the window of the
configuration shown in FIGS. 12 and 13 but also to a window
divided into upper and lower sub-windows. Furthermore, the
method of this embodiment can be applied to a window
divided into upper, lower, left and right sub-windows, as
shown in FIG. 11.

The window shown in FIG. 11 is normally configured, so
that a boundary which divides the upper and lower sub-win-
dows and that which divides the right and left sub-windows
are independently operable. Hence, by executing the same
processing as that shown in FIG. 14 in turn to these bound-
aries, the display control method of this embodiment can be
applied.

In this case, the first and second regions are required to be
defined on each boundary. As shown in FIG. 15A, the length
of each boundary may be equally divided. Alternatively, as
shown in FIG. 15B, a part divided by an intersection of the
vertical and horizontal boundaries may be equally divided. In
case of FIG. 15B, the lengths of the first and second regions
change sequentially depending on the position of the inter-
section.

US 9,389,746 B2

23

As described above, according to this embodiment, when a
windows is divided into sub-windows by a boundary, the
change method of the display contents in the sub-windows
can be controlled simultaneously with resizing of the sub-
windows. In this way, a desired display result can be obtained
by a series of operations, thus improving the work efficiency.

Fifth Embodiment

This embodiment proposes display control which is
executed in association with the scrolling ON/OFF control
method upon resizing a window, that is proposed by the
present invention.

Conventionally, display control executed upon resizing
includes control for switching ON/OFF of scrolling orascroll
ratio of the display contents according to dragging of a border
or corner, control for reducing or enlarging the display con-
tents according to dragging of a border or corner, or the like.

In general, when the display contents are scrolled upon
resizing, the contents on an area opposite to the dragged part
are hidden. On the other hand, when the display contents are
not scrolled upon resizing, the contents of an area near the
dragged part are hidden. (Note that the “area opposite to the
dragged part” is an area near a border opposite to the dragged
border, or an area near two borders that do not contact the
dragged corner. The “area near the dragged part” is an area
near the dragged border or an area near two borders that
contact the dragged corner.)

When a part of the window is hidden, the usability may
often be impaired. Hence, it is desired to display such part
although imperfectly. Hence, in this embodiment, object
images such as characters, patterns, photos, and the like,
which are located on an area to be normally hidden, are
displayed while being jammed into the area to be hidden, so
as to allow the user to see them.

For example, display contents shown in FIG. 16 are
assumed. This may be a normal window described in the first
embodiment or may be a window which is described in the
second embodiment, and is always maximized in one direc-
tion (Y direction) within the display screen. In FIG. 16, a left
border 1601 is movable by dragging, and a window 1600 can
be resized by moving this border 1601.

FIGS. 17A and 17B show display examples when the user
resizes (reduces) the window by dragging the border in this
embodiment. FIG. 17A shows a display example upon resiz-
ing with scrolling. With this display control, respective
objects move to the right upon resizing, and their movement
stops when these objects are brought into contact with the
opposing border. In this case, the objects are displayed to
overlap each other near the opposing border.

FIG. 17B shows a display example upon resizing without
scrolling. With this display control, since scrolling is not
made, all objects are displayed without moving their position
atthe beginning of dragging of the border. However, when the
dragged border moves to the right and is brought into contact
with respective objects, these objects begin to move to the
right. In this case, the objects are displayed to overlap each
other near the dragged border. As the overlapping order, a
newly stopped object may be displayed in front of or behind
a preexistent object.

According to such display control, display control as if
objects attached to a window were being scooped by a wiper
can be implemented, and objects which are normally hidden
are displayed although imperfectly, thus improving the
usability.

FIGS. 18A and 18B show display examples upon resizing
a window by dragging one corner of the window.

30

35

40

45

50

60

65

24

FIG. 18A shows a display example upon resizing with
scrolling, and FIG. 18B shows that upon resizing without
scrolling. The respective operations have the same contents
described using FIGS. 17A and 17B for X and Y components.

In order to allow the user to recognize an object group to be
normally hidden more easily, a method shown in FIGS. 19A
and 19B is also available. FIG. 19A shows a display example
upon resizing with scrolling. In this case, the following dis-
play control is executed. That is, respective objects move to
the right upon resizing, and their movement stops when
respective objects are brought into contact with the opposing
border. In addition, when such object is brought into contact
with another object whose movement has already stopped
previously, the movement of that object stops at that time. As
aresult, objects are displayed not to overlap each other unlike
in FIG. 17B.

FIG. 19B shows a case upon resizing without scrolling.
The following display control is executed. That is, all objects
stand still initially. When the dragged border moves to the
right and is brought into contact with respective objects, these
objects begin to move to the right. In addition, when the
objects which have already begun to move are brought into
contact with other objects, the other objects begin to move at
that time. As a result, objects are displayed not to overlap each
other unlike in FIG. 17B.

Note that upon resizing using the corner, the operations
have the same contents for X and Y components.

The display control processing according to this embodi-
ment will be described below with reference to the flowchart
shown in FIG. 20. FIG. 20 is a flowchart showing an example
of the window resizing processing corresponding to the dis-
play examples shown in FIGS. 17A and 17B. The processing
corresponding to the flowchart shown in FIG. 20 is imple-
mented when a CPU 101 reads out a corresponding process-
ing program stored in an HD 103 onto a RAM 102 and
executes that program to control respective components.

The CPU 101 determines in step S2001 whether or not the
user begins to drag a border. If the user begins to drag the
border (“YES” in step S2001), the process advances to step
S2002. The CPU 101 determines in step S2002 if scrolling is
ON simultaneously with resizing of a window by dragging. If
it is determined that scrolling is OFF (“NO” in step S2002),
the process advances to step S2003; otherwise (“YES” in step
S2002), the process advances to step S2005. Note that
ON/OFF of scrolling can be determined according to the
processes described in the first to fourth embodiments.

A case will be examined below wherein a display area of an
object O is expressed by O{(01x, Oly), (02x, O2y)}. Note
that (O1x, Oly) represents the coordinates of the upper left
end of the object, and (O2x, O2y) represents the coordinates
of'the lower right end of the object. Note that the left direction
corresponds to a negative direction of the X-axis on an X-Y
coordinate system 502 set in association with the display
screen, and the up direction corresponds to a positive direc-
tion of the Y-axis. Likewise, the right direction corresponds to
a positive direction of the X-axis, and the down direction
corresponds to a negative direction of the Y-axis. Let
AO(AO1x, AO2x) be a change in display area O in the X-axis
direction.

If it is determined in step S2002 that scrolling is OFF, the
display position of the object O is basically not changed. That
is, the change amount AO=(0, 0) of the coordinates of the
display area. On the other hand, if it is determined in step
S2002 that scrolling is ON, the display position of the object
O is changed according to the drag amount. For example,
letting Bx be the coordinate of the dragged border in the X
direction, and ABx be the moving amount, the change amount

US 9,389,746 B2

25
AOx=(ABx, ABx) of the display area of the object in the X
direction. Note that display of such standard objects is not the
gist of this embodiment, and is not described in the flowchart
of FIG. 20. However, in practice, this display control is
applied to objects which do not contact the dragged border or
opposing border.

The following explanation will continue while focusing on
an object which is in contact with the dragged border or its
opposing border.

The CPU 101 determines in step S2003 whether or not
there is an object which is in contact with the dragged border.
This determination process can be attained by comparing the
coordinates of the display position of the object, and those of
the dragged border. At this time, when the X-coordinate Bx of
the dragged border falls within a range O1x=Bx=02x, it can
be considered that the object is in contact with the dragged
border. Note that since the flowchart of FIG. 20 assumes the
case of FIGS. 17A and 17B, that is, the case of dragging the
border in the X direction, only the coordinate in the X-axis
direction is considered. In addition, when a border also moves
in the Y direction, whether or not an object is in contact with
the dragged border can be determined by seeing whether or
notthe position By of'the border in the Y direction falls within
the range of that object.

If it is determined that there is an object that is in contact
with the dragged border (“YES” in step S2003), the process
advances to step S2004. On the other hand, if it is determined
that there is no object that is in contact with the dragged
border (“NO” in step S2003), the process jumps to step
S2007.

In step S2004, the CPU 101 changes the display position of
the object which is determined to contact the border accord-
ing to the moving amount ABx of the border. That is, the CPU
101 sets the moving amount AOx=(0, 0) of the object before
contact to be equal to AOx=(ABx, ABx), so as to be matched
with the moving amount of the dragged border. As a result, if
scrolling is OFF, the display position of the object which is in
contact with the dragged border can be moved and displayed
together with the dragged border. After that, the process
advances to step S2007.

If'scrolling is executed simultaneously with dragging of the
border, the CPU 101 determines in step S2005 whether or not
there is an object that is in contact with the border opposite to
the dragged border.

In this case as well, letting BOx be the X-coordinate of the
opposing border, if BOx falls within a range O1x=<BOx=02x,
it can be considered that the object is in contact with the
opposing border. Note that since the flowchart of FIG. 20
assumes the case of FIGS. 17A and 17B, that is, the case of
dragging the border in the X direction, only the coordinate in
the X-axis direction is considered. In addition, when a border
also moves in the'Y direction, whether or not an object is in
contact with the opposing border can be determined by seeing
whether or not the position BOy of the opposing border in the
Y direction falls within the range of that object.

If it is determined that there is an object that contacts the
opposing border (“YES” in step S2005), the process advances
to step S2006. On the other hand, if it is determined that there
is no object that contacts the opposing border (“NO” in step
S2005), the process jumps to step S2007.

In step S2006, the CPU 101 fixes the display position of the
object which is determined to contact at the current display
position. That is, the object is scrolled before contact to have
AOx=(ABx, ABX) in accordance with the change amount by
dragging, and its scrolling is stopped to have AOx=(0, 0). In
this way, even when scrolling is executed as a whole, the
display position of the object which is in contact with the

10

15

20

25

30

35

40

45

50

55

60

65

26

opposing border is fixed near the opposing border, so that the
object stays within the window display area. After that, the
process advances to step S2007.

In step S2007, the CPU 101 updates display of the object
which is in contact with the border based on the moving
amount of the object determined in step S2004 or S2006. The
CPU 101 updates display of other objects according to
ON/OFF of'scrolling based on the determination result in step
S2002.

The CPU 101 determines in step S2008 whether or not the
user ends dragging. If it is determined that the user ends
dragging (“YES” in step S2008), this processing ends. On the
other hand, if it is determined that the user does not end
dragging (“NO” in step S2008), the process returns to step
S2002 to continue the processing.

The processing has been described taking as an example
the case of FIGS. 17A and 17B. By extending the aforemen-
tioned processing also in the Y direction, the display control
corresponding to FIGS. 18A and 18B can be implemented. As
for display associated with FIGS. 19A and 19B, whether or
not objects are in contact with each other needs to be further
determined. Then, in case of “with scrolling”, upon detection
of a contact with the border or object, a change in display
position of that object is stopped (i.e., AOx=(0, 0)). On the
other hand, in case of “without scrolling”, upon detection of
a contact with the border or object, a change in display posi-
tion of that object is started (i.e., AOx=(ABx, ABx)).

Furthermore, even when a window is divided into sub-
windows by a boundary like in the fourth embodiment, the
display control of objects within a display area can be imple-
mented based on the presence/absence of a contact with the
boundary or border in the same manner as described above.

As described above, even when the display contents are
scrolled simultaneously with dragging, when an object in the
display contents is in contact with an element (border or
boundary) of the window, scrolling of the contact object can
be suppressed. Even when the display contents are not
scrolled simultaneously with dragging, when an object in the
display contents is in contact with an element (border or
boundary) of the window, the contact object can be scrolled.

On the other hand, even when the display contents are
scrolled simultaneously with dragging, when an object in the
display contents is in contact with another object whose
scrolling has already been suppressed, scrolling of the contact
object can also be suppressed. Even when the display con-
tents are not scrolled simultaneously with dragging, when an
object in the display contents is in contact with another object
which has already been scrolled, the contact object can also
be scrolled.

In this way, display control as if objects attached to a
window were being scooped by a wiper can be implemented,
and objects which are normally hidden are displayed
although imperfectly, thus further improving the usability.

OTHER EMBODIMENTS

The above-described exemplary embodiments of the
present invention can also be achieved by providing a com-
puter-readable storage medium that stores program code of
software (computer program) which realizes the operations
of'the above-described exemplary embodiments, to a system
or an apparatus. Further, the above-described exemplary
embodiments can be achieved by program code (computer
program) stored in a storage medium read and executed by a
computer (CPU or micro-processing unit (MPU)) of a system
or an apparatus.

US 9,389,746 B2

27

The computer program realizes each step included in the
flowcharts of the above-mentioned exemplary embodiments.
Namely, the computer program is a program that corresponds
to each processing unit of each step included in the flowcharts

for causing a computer to function. In this case, the computer 5

program itself read from a computer-readable storage
medium realizes the operations of the above-described exem-
plary embodiments, and the storage medium storing the com-
puter program constitutes the present invention.

Further, the storage medium which provides the computer
program can be, for example, a floppy disk, a hard disk, a
magnetic storage medium such as a magnetic tape, an optical/
magneto-optical storage medium such as a magneto-optical
disk (MO), a compact disc (CD), a digital versatile disc
(DVD), a CD read-only memory (CD-ROM), a CD record-
able (CD-R), a nonvolatile semiconductor memory, a ROM
and so on.

Further, an OS or the like working on a computer can also
perform a part or the whole of processes according to instruc-
tions of the computer program and realize functions of the
above-described exemplary embodiments.

In the above-described exemplary embodiments, the CPU
jointly executes each step in the flowchart with a memory,
hard disk, a display device and so on. However, the present
invention is not limited to the above configuration, and a
dedicated electronic circuit can perform a part or the whole of
processes in each step described in each flowchart in place of
the CPU.

While the present invention has been described with refer-
ence to exemplary embodiments, it is to be understood that
the invention is not limited to the disclosed exemplary
embodiments. The scope of the following claims is to be
accorded the broadest interpretation so as to encompass all
such modifications and equivalent structures and functions.

This application claims the benefit of Japanese Patent
Application No. 2007-186326, filed Jul. 17, 2007, which is
hereby incorporated by reference herein in its entirety.

What is claimed is:

1. An information processing apparatus comprising:

a processor configured to receive drag of a border of a
window displayed on a display screen of a display unit;
and

the processor configured to resize the window with scroll-
ing a content displayed in the window when a first region

10

20

25

30

35

40

28

of the border of the window is dragged in a direction
perpendicular to the border and without scrolling the
content when a second region of the border of the win-
dow is dragged in a direction perpendicular to the bor-
der.

2. An information processing method comprising:

receiving drag of a border of a window displayed on a

display screen of a display unit; and

resizing the window with scrolling a content displayed in

the window when a first region of the border of the
window is dragged in a direction perpendicular to the
border and without scrolling the content when a second
region of the border of the window is dragged in a
direction perpendicular to the border.

3. A computer program stored in a non-transitory computer
readable medium for causing a computer to perform an infor-
mation processing method comprising:

receiving drag of a border of a window displayed on a

display screen of a display unit; and

resizing the window with scrolling a content displayed in

the window when a first region of the border of the
window is dragged in a direction perpendicular to the
border and without scrolling the content when a second
region of the border of the window is dragged in a
direction perpendicular to the border.

4. The apparatus according to claim 1, wherein

the window includes borders and corners,

at least one of the borders includes the first region and the

second region, and

the first region and the second region do not overlap with

each other.

5. The method according to claim 2, wherein

the window includes borders and corners,

at least one of the borders includes the first region and the

second region, and

the first region and the second region do not overlap with

each other.

6. The program according to claim 3, wherein

the window includes borders and corners,

at least one of the borders includes the first region and the

second region, and

the first region and the second region do not overlap with

each other.

